Портативная акустическая система

Гуманитарные науки

Гуманитарные науки

Биржа студенческих   работ. Контрольные, курсовые, рефераты.

Биржа студенческих
работ. Контрольные, курсовые, рефераты.

Студенческий файлообменник

Студенческий файлообменник

Выполнение 
работ на заказ. Контрольные, курсовые и дипломные работы

Выполнение работ на заказ. Контрольные, курсовые и дипломные работы

Занимайтесь онлайн 
        с опытными репетиторами

Занимайтесь онлайн
с опытными репетиторами

Приглашаем к сотрудничеству преподователей

Приглашаем к сотрудничеству преподователей

Готовые шпаргалки, шпоры

Готовые шпаргалки, шпоры

Отчет по практике

Отчет по практике

Приглашаем авторов для работы

Авторам заработок

Решение задач по математике

Закажите реферат

Закажите реферат

Инженерная графика Резьбовые и сварные соединения Стандартные крепежные детали Соединения деталей с помощью болтов, винтов и шпилек Соединения разъёмные и неразъёмные Резьбовое соединение деталей

Порядок проектного расчёта плоскоременной передачи

Выбирают тип ремня.

Определяют диаметр малого шкива D1=(110…130)(N/n)1/3, где N–мощность, КВТ, n–частота вращения, об/мин, подбирают ближайший по ГОСТ 17383-73.

Выбирают межосевое расстояние, подходящее для конструкции машины 2(D1+D2) ≤a≤15м. 

Проверяют угол обхвата на малом шкиве: α1=180о-57о(D2-D1)/a, рекомендуется [α1]≥150о, при необходимости на ведомой нити ремня применяют натяжной ролик, который позволяет даже при малых межосевых расстояниях получить угол обхвата более 180о. Угол обхвата можно измерить по вычерченной в масштабе схеме передачи.

По передаваемой мощности N и скорости v ремня определяют ширину b≥N/(vz[p]) и площадь ремня F≥N/(v[k]), где [p] –допускаемая нагрузка на 1мм ширины прокладки, [k] – допускаемая нагрузка на единицу площади сечения ремня.

Подбирают требуемый ремень по ГОСТ 101-54; 6982-54; 18679-73; 6982-75; 23831-79; ОСТ 17-969-84. Построение очертаний поверхности на комплексном чертеже. Касательные плоскости широко применяются при решение различных позиционных задач на поверхности.

Проверяют ресурс передачи N=3600vzшT.

Вычисляют силы, действующие на валы передачи FR= Focos(β/2).

Порядок проектного расчёта клиноременной передачи

Выбирают по ГОСТ 1284-68;1284.1-80; 5813-76; РТМ 51015-70 профиль ремня. Большие размеры в таблицах соответствуют тихоходным, а меньшие – быстроходным передачам.

Определяют диаметр малого шкива.

Выбирают межосевое расстояние, подходящее для конструкции машины  0,55(DM+Dб)+h ≤ a ≤ 2(D1+D2), где h – высота сечения ремня.

Находят длину ремня и округляют её до ближайшего стандартного значения.

Проверяют частоту пробегов ремня и если она выше допустимой, то увеличивают диаметры шкивов или длину ремня.

Окончательно уточняют межосевое расстояние.

Определяют угол обхвата на малом шкиве α1 = 180о-57о(D2-D1)/a, рекомендуется [α1] ≥ 120о.

По тяговой способности определяют число ремней.

При необходимости проверяют ресурс.

Вычисляют силы, действующие на валы передачи.

Шкивы плоскоременных передач имеют: обод, несущий ремень, ступицу, сажаемую на вал и спицы или диск, соединяющий обод и ступицу.

Шкивы обычно изготавливают чугунными литыми, стальными, сварными или сборными, литыми из лёгких сплавов и пластмасс. Диаметры шкивов определяют из расчёта ременной передачи, а потом округляют до ближайшего значения из ряда R40 (ГОСТ 17383-73*). Ширину шкива выбирают в зависимости от ширины ремня [32].

Во избежание сползания ремня их рабочие поверхности делают выпуклыми. Шероховатость RZ £ 10 мкм. 


Чугунные шкивы применяют при скоростях до 30 ÷ 45 м/с. Шкивы малых диаметров до 350 мм имеют сплошные диски, шкивы больших диаметров – ступицы эллиптического переменного сечения. Стальные сварные шкивы применяют при скоростях 60 ÷ 80 м/с. Шкивы из лёгких сплавов перспективны для быстроходных передач до 100м/с.

Плоские ремни должны обеспечивать:

прочность при переменных напряжениях;

износостойкость;

высокое трение со шкивами;

малую изгибную жёсткость.

Этим условиям удовлетворяют высококачественная кожа и синтетические материалы (резина), армированные белтинговым тканевым (ГОСТ 6982-54), полимерным (капрон, полиамид С-6, каучук СКН-40, латекс) или металлическим кордом. Применяются прорезиненные тканевые ремни (ГОСТ 101-54), слоистые нарезные ремни с резиновыми прослойками, послойно и спирально завёрнутые ремни. В сырых помещениях и агрессивных средах применяют ремни с резиновыми прокладками [32].

Ремни выпускают конечными и поставляют в рулонах.

Соединение концов ремней оказывает большое влияние на работу передачи, особенно при больших скоростях. Выбирая тип соединения следует учитывать рекомендации специальной литературы. Самый совершенный способ соединения – склеивание, которое производят для однородных ремней по косому срезу (а), для слоёных по ступенчатой поверхности (б). Надёжным способом считают сшивку встык жильными струнами (в,г). Из механических соединений лучшими являются проволочные спирали, которые продеваются в отверстия и после прессования обжимают концы ремней (д).

У шкивов клиноременных передач рабочей поверхностью являются боковые стороны клиновых канавок. Диаметр, по которому определяют расчётную длину ремня, называют расчётным диаметром, по ГОСТ 20898-75 он обозначается dp. По этому же ГОСТу для правильного контакта ремня со шкивом угол канавки назначают в зависимости от диаметра шкива.

Клиноременные шкивы выполняют из тех же материалов, что и плоскоременные. Известны сборные шкивы из стальных тарелок.

Быстроходные шкивы требуют балансировки.

Материалы клиновых ремней в основном те же, что и для плоских. Выполняются прорезиненные ремни с тканевой обёрткой для большего трения, кордотканевые (многослойный корд) и кордошнуровые ремни (шнур, намотанный по винтовой линии), ремни с несущим слоем из двух канатиков. Иногда для уменьшения изгибных напряжений применяют гофры на внутренней и наружных поверхностях ремня. Клиновые ремни выпускают бесконечными (кольца). Угол клина ремня 40о.

Натяжение ремня существенно влияет на долговечность, тяговую способность и к.п.д. передачи. Чем выше предварительное натяжение ремня Fo , тем больше тяговая способность и к.п.д., но меньше долговечность ремня. Натяжение ремня в передачах осуществляется:

® Устройствами периодического действия, где ремень натягивается винтами. Ремень периодически подтягивается по мере вытяжки. Требуется систематическое наблюдение за передачей, иначе возможно буксование и быстрый износ ремня.

® Устройствами постоянного действия, где натяжение создаётся грузом, весом двигателя или пружиной. Часто натяжение происходит за счёт массы двигателя на качающейся плите. К таким устройствам относятся натяжные ролики. Натяжение ремня автоматически поддерживается постоянным.

® Устройствами, автоматически регулирующими натяжение в зависимости от нагрузки с использованием сил и моментов, действующих в передаче. Шкив 1 установлен на качающемся рычаге, который также является осью ведомого колеса зубчатой передачи. Натяжение ремня 2Fo равно окружной силе на шестерне и пропорционально передаваемому моменту.

КОНТРОЛЬНЫЕ ВОПРОСЫ

За счёт каких сил передают движение фрикционные передачи ?

Каковы достоинства и недостатки фрикционных передач ?

Каковы основные виды поломок фрикционных передач ?

Какие материалы применяются для фрикционных передач ?

Какой деталью выделяются ременные передачи среди фрикционных ?

Какие силы действуют в ремне ?

Какие нагрузки действуют на опоры валов колёс ременной передачи ?

Как соединяются концы ремня ?

Какие существуют способы поддержания натяжения ремней ?

Передачи трением (сцеплением) ФРИКЦИОННЫЕ ПЕРЕДАЧИ Передают движение за счёт сил трения (лат. frictio – трение). Простейшие передачи состоят из двух цилиндрических или конических роликов - катков.

Ременные передачи Являются разновидностью фрикционных передач, где движение передаётся посредством специального кольцевого замкнутого ремня.

Валы и оси Колёса передач установлены на специальных продолговатых деталях круглого сечения. Среди таких деталей различают оси и валы


Конструирование валов