Портативная акустическая система

Гуманитарные науки

Гуманитарные науки

Биржа студенческих   работ. Контрольные, курсовые, рефераты.

Биржа студенческих
работ. Контрольные, курсовые, рефераты.

Студенческий файлообменник

Студенческий файлообменник

Выполнение 
работ на заказ. Контрольные, курсовые и дипломные работы

Выполнение работ на заказ. Контрольные, курсовые и дипломные работы

Занимайтесь онлайн 
        с опытными репетиторами

Занимайтесь онлайн
с опытными репетиторами

Приглашаем к сотрудничеству преподователей

Приглашаем к сотрудничеству преподователей

Готовые шпаргалки, шпоры

Готовые шпаргалки, шпоры

Отчет по практике

Отчет по практике

Приглашаем авторов для работы

Авторам заработок

Решение задач по математике

Закажите реферат

Закажите реферат

Вычисление длины дуги кривой Аналитическая геометрия на плоскости Решить систему линейных уравнений Комплексные числа Алгебра и аналитическая геометрия Система линейных уравнений Двойной интеграл Криволинейный интеграл 2-го рода

Математический анализ. Контрольная работа

Возрастание и убывание функции, точки экстремума.

. Видно, что у¢< 0 при любом х ¹ 0, следовательно, функция убывает на всей области определения и не имеет экстремумов. В точке х = 0 первая производная функции равна нулю, однако в этой точке убывание не сменяется на возрастание, следовательно, в точке х = 0 функция скорее всего имеет перегиб. Для нахождения точек перегиба, находим вторую производную функции.

  y¢¢ = 0 при х =0 и y¢¢ = ¥ при х = 1.

Точки (0,1) и (1,0) являются точками перегиба, т.к. y¢¢(1-h) < 0; y¢¢(1+h) >0; y¢¢(-h) > 0; y¢¢(h) < 0 для любого h > 0.

6. Построим график функции.

 

Пример: Исследовать функцию  и построить ее график.

1. Областью определения функции являются все значения х, кроме х = 0.

2. Функция является функцией общего вида в смысле четности и нечетности.

3. Точки пересечения с координатными осями: c осью Ох: y = 0; x =

  с осью Оу: x = 0; y – не существует.

4. Точка х = 0 является точкой разрыва , следовательно, прямая х = 0 является вертикальной асимптотой.

Наклонные асимптоты ищем в виде: y = kx + b.

Наклонная асимптота у = х.

 

Находим точки экстремума функции.

;  y¢ = 0 при х = 2, у¢ = ¥ при х = 0.

y¢ > 0 при х Î (-¥, 0) – функция возрастает, 

y¢ < 0 при х Î (0, 2) – функция убывает,

у¢ > 0 при х Î (2, ¥) – функция возрастает.

Таким образом, точка (2, 3) является точкой минимума.

Для определения характера выпуклости/вогнутости функции находим вторую производную.

  > 0 при любом х ¹ 0, следовательно, функция вогнутая на всей области определения.

6. Построим график функции.

 

Пример: Исследовать функцию  и построить ее график.

Областью определения данной функции является промежуток х Î (-¥, ¥).

В смысле четности и нечетности функция является функцией общего вида.

Точки пересечения с осями координат: с осью Оу: x = 0, y = 0;

 с осью Ох: y = 0, x = 0, x = 1.

Асимптоты кривой.

Вертикальных асимптот нет.

Попробуем найти наклонные асимптоты в виде y = kx + b.

 - наклонных асимптот не существует.

Находим точки экстремума.

Для нахождения критических точек следует решить уравнение 4х3 – 9х2 +6х –1 = 0.

Для этого разложим данный многочлен третьей степени на множители.

Подбором можно определить, что одним из корней этого уравнения является число

х = 1. Тогда:

 4x3 – 9x2 + 6x – 1 x - 1

 ` 4x3 – 4x2 4x2 – 5x + 1

 - 5x2 + 6x

  ` - 5x2 + 5x

 x - 1

 `  x - 1

 0

Тогда можно записать (х – 1)(4х2 – 5х + 1) = 0. Окончательно получаем две критические точки: x = 1 и x = ¼.

Примечание. Операции деления многочленов можно было избежать, если при нахождении производной воспользоваться формулой производной произведения:

Найдем вторую производную функции: 12x2 – 18x + 6. Приравнивая к нулю, находим:

x = 1, x = ½.

Систематизируем полученную информацию в таблице:

 (-¥ ; ¼)

1/4

 (¼; ½) 

1/2

( ½ ; 1 )

 1

 (1 ; ¥)

f¢¢(x) 

 +

 +

 +

 0

 -

 0

 +

f¢(x)

 -

 0

 +

 +

 +

 0

 +

f(x)

убывает

вып. вниз

min

возрастает

вып. вниз

перегиб

возрастает

вып. вверх

перегиб

возрастает

вып. вниз

Построим график функции.

 

 

Первообразная и неопределённый интеграл.

Первообразная функция.

 Определение: Функция F(x) называется первообразной функцией функции f(x) на отрезке [a, b], если в любой точке этого отрезка верно равенство:

F¢(x) = f(x).

 Надо отметить, что первообразных для одной и той же функции может быть бесконечно много. Они будут отличаться друг от друга на некоторое постоянное число.

F1(x) = F2(x) + C.

Неопределенный интеграл.

 Определение: Неопределенным интегралом функции f(x) называется совокупность первообразных функций, которые определены соотношением:

F(x) + C.

Записывают:

 Условием существования неопределенного интеграла на некотором отрезке является непрерывность функции на этом отрезке.

 Свойства:

1.

2.

3.

4.   где u, v, w – некоторые функции от х.

Пример:

Нахождение значения неопределенного интеграла связано главным образом с нахождением первообразной функции. Для некоторых функций это достаточно сложная задача. Ниже будут рассмотрены способы нахождения неопределенных интегралов для основных классов функций – рациональных, иррациональных, тригонометрических, показательных и др.

 

Таблица основных интегралов.

  Для удобства значения неопределенных интегралов большинства элементарных функций собраны в специальные таблицы интегралов, которые бывают иногда весьма объемными. В них включены различные наиболее часто встречающиеся комбинации функций. Но большинство представленных в этих таблицах формул являются следствиями друг друга, поэтому ниже приведем таблицу основных интегралов, с помощью которой можно получить значения неопределенных интегралов различных функций.

 Интеграл

 Значение

 Интеграл

 Значение

1

 -ln½cosx½+C

9

 ex + C

2

 ln½sinx½+ C

10

 sinx + C

3

 

11

 -cosx + C

4

 

12

 tgx + C

5

13

 -ctgx + C

6

ln

14

 arcsin + C

7

15

8

 

16

 

Применение дифференциала к приближенным вычислениям. Дифференциал функции y = f(x) зависит от Dх и является главной частью приращения Dх.

Производные и дифференциалы высших порядков. Пусть функция f(x)- дифференцируема на некотором интервале. Тогда, дифференцируя ее, получаем первую производную

Исследование функции на экстремум с помощью производных высших порядков

Непосредственное интегрирование. Метод непосредственного интегрирования основан на предположении о возможном значении первообразной функции с дальнейшей проверкой этого значения дифференцированием. Вообще, заметим, что дифференцирование является мощным инструментом проверки результатов интегрирования.


Возрастание и убывание функции