Портативная акустическая система

Гуманитарные науки

Гуманитарные науки

Биржа студенческих   работ. Контрольные, курсовые, рефераты.

Биржа студенческих
работ. Контрольные, курсовые, рефераты.

Студенческий файлообменник

Студенческий файлообменник

Выполнение 
работ на заказ. Контрольные, курсовые и дипломные работы

Выполнение работ на заказ. Контрольные, курсовые и дипломные работы

Занимайтесь онлайн 
        с опытными репетиторами

Занимайтесь онлайн
с опытными репетиторами

Приглашаем к сотрудничеству преподователей

Приглашаем к сотрудничеству преподователей

Готовые шпаргалки, шпоры

Готовые шпаргалки, шпоры

Отчет по практике

Отчет по практике

Приглашаем авторов для работы

Авторам заработок

Решение задач по математике

Закажите реферат

Закажите реферат

Функции в экономике Дифференцирование сложной функции Исследование функций и построение графиков Локальный экстремум функции Векторное пространство Элементы теории вероятностей Экономический анализ транспортных задач

Математический анализ. Контрольная работа

Элементы теории вероятностей

ОСНОВНЫЕ ПОЛОЖЕНИЯ ТЕОРИИ ВЕРОЯТНОСТЕЙ

События, происходящие в окружающем нас мире, можно разделить на три вида: достоверные, невозможные и случайные. Достоверным относительно комплекса условий S называется событие, которое обязательно произойдет при осуществлении этого комплекса условий. Например, если гладкий желоб с лежащим внутри него тяжелым шариком наклонить, то шарик обязательно покатится по желобу в сторону уклона. Невозможным называется событие, которое заведомо не произойдет при осуществлении комлекса условий S. Например, из герметически изолированного сосуда вода не может вылиться. Случайным относительно комплекса условий S называется событие, которое при осуществлении указанного комплекса условий может либо произойти, либо не произойти. Например, если вы уронили фарфоровую чашку на пол, то она может как разбиться, так и остаться неповрежденной.

Теория вероятностей имеет дело со случайными событиями. Однако она не может предсказать, произойдет единичное событие или нет. Теория вероятностей изучает вероятностные закономерности массовых однородных случайных событий. Ее методы получили широкое распространение в различных областях естествознания и в прикладных проблемах техники. Теория вероятностей легла в основу теории массового обслуживания и теории надежности. В последние годы аппарат теории вероятностей активно используется в экономике.

Элементы теории множеств Понятие "множество" – неопределяемое понятие. Под множеством понимается "набор", "коллекция", "совокупность" и т.п. отличающихся друг от друга объектов, объединенных каким-либо общим свойством

Основные понятия теории вероятностей

Некоторые формулы комбинаторики

Пусть задано конечное множество элементов некоторой природы. Из них можно составлять определенные комбинации, количества которых изучает комбинаторика. Некоторые ее формулы используются в теории вероятности; приведем их.

Комбинации, состоящие из одной и той же совокупности п различных элементов и отличающиеся только порядком их расположения, называются перестановками. Число всех возможных перестановок определяется произведением чисел от единицы до п:

Пример 1. Сколько четырехзначных чисел можно составить из цифр 1, 2, 3 и 4 с использованием всех указанных цифр в каждом числе ?

Решение. Искомое число равно Р4 = 4! = 1 ∙ 2 ∙ 3 ∙ 4 = 24.

Комбинации по т элементов, составленные из п различных элементов (m ≤ п), отличающиеся друг от друга либо элементами, либо их порядком, называются размещениями. Число всевозможных размещений

Пример 2. Сколько трехзначных чисел можно составить из семи различных цифр при отсутствии среди них нуля ?

Решение. Искомое количество цифр

Комбинации, содержащие по т элементов каждая, составленные из п различных элементов (m ≤ п) и различающиеся хотя бы одним элементом, называются сочетаниями. Число сочетаний дается формулой

Можно показать, что справедливы формулы

В частности, первую из формул удобно использовать в расчетах, когда т > п/2.

Напомним формулу бинома Ньютона, в которой участвуют коэффициенты (17.1):

Пример 3. Сколькими способами можно выбрать а) по три карты, б) по 32 карты из колоды, содержащей 36 игральных карт?

Решение. Искомое число способов:

Виды случайных событий

Выше было введено определение случайного события. Обычно в теории вероятностей вместо "совокупности условий" употребляют термин "испытание", и тогда событие трактуется как результат испытания. Например, стрельба по мишени: выстрел — это испытание, попадание в мишень — это событие. Другой пример: подбрасывание монеты вверх — это испытание, выпадение орла (или решки) — это событие.

Определение 1. События называют несовместными, если в одном и том же испытании появление одного из них исключает появление других. Например, выпадение орла при подбрасывании монеты исключает появление в этом же испытании решки и наоборот.

Определение 2. Несколько событий образуют полную группу, если в результате испытания появление хотя бы одного из них является достоверным событием. Например, при произведении выстрела по мишени (испытание) обязательно будет либо попадание, либо промах; эти два события образуют полную группу.

Следствие. Если события, образующие полную группу, попарно несовместны, то в результате испытания появится одно и только одно из этих событий.

Этот частный случай будет использован далее.

Классическое определение вероятности

Назовем каждый из возможных результатов испытания элементарным событием, или исходом. Те элементарные исходы, которые интересуют нас, называются благоприятными событиями.

Определение 3. Отношение числа благоприятствующих событию А элементарных исходов к общему числу равновозможных несовместных элементарных исходов, образующих полную группу, называется вероятностью события А.

Вероятность события А обозначается Р(А). Понятие вероятности является одним из основных в теории вероятностей. Данное выше определение является классическим. Из него вытекают некоторые свойства.

Свойство 1. Вероятность достоверного события равна единице.

Свойство 2. Вероятность невозможного события равна нулю.

Свойство 3. Вероятность случайного события есть положительное число:

Следовательно, вероятность любого события удовлетворяет неравенству

Отметим, что современные курсы теории вероятностей основаны на теоретико-множественном подходе, в котором элементарные события являются точками пространства элементарных событий Ω; при этом событие А отождествляется с подмножеством элементарных исходов, благоприятствующих этому событию, А   Ω.

Приведем примеры непосредственного вычисления вероятностей.

Пример 4. В коробке лежит 10 шаров: 6 белых и 4 черных. Найти вероятность того, что из пяти взятых наугад шаров будет 4 белых.

Решение. Найдем число благоприятных исходов: число способов, которыми можно взять 4 белых шара из 6 имеющихся, равно C = C = . = 15. Общее число исходов определяется числом сочетаний из 10 по 5: C = 252. Согласно определению 3 искомая вероятность Р = 15/252 ≈ 0,06.

Пример 5. Какова вероятность того, что при заполнении карточки спортивной лотереи "6 из 36" будет угадано 4 номера?

Решение. Общее число исходов равно C = 1947792. Число благоприятных исходов равно С = 15. Отсюда искомая вероятность равна 7,7 ∙ 10-6.

Пример 6. В ящике находится 10 стандартных и 5 нестандартных деталей. Какова вероятность, что среди наугад взятых 6 деталей будет 4 стандартных и 2 нестандартных?

Решение. Общее число исходов равно С. Число благоприятных исходов определяется произведением СС, где первый сомножитель соответствует числу вариантов изъятия из ящика 4-х стандартных деталей из 10, а второй — числу вариантов изъятия из ящика 2-х нестандартных деталей из пяти. Отсюда следует, что искомая вероятность равна

 

Теорема сложения вероятностей

Несовместные события

Определение 1. Суммой двух событий А и В называют событие С = А + В, которое состоит в появлении либо события А, либо события В, либо событий A и В одновременно.

Это определение напоминает сумму множеств (см. гл. 1) и используется в теоретико-множественном подходе теории вероятностей. Примеры суммы событий: произведены два выстрела, и события А и В — попадания при первом и втором выстрелах соответственно; тогда А + В — попадание либо при первом выстреле, либо при втором, либо в обоих выстрелах. Если события А и В несовместные, то их сумма — это событие, состоящее в появлении какого-либо из этих событий.

Аналогично определяется сумма нескольких событий, состоящая в появлении хотя бы одного из этих событий.

ТЕОРЕМА 1. Вероятность появления какого-либо из двух несовместных событий равна сумме вероятностей этих событий:

Следствие. Вероятность появления какого-либо из нескольких попарно несовместных событий равна сумме их вероятностей:

Пример 1. Стрелок стреляет по мишени, разделенной на 4 концентрические зоны. Вероятности попадания в эти области соответственно равны 0,4, 0,3, 0,2 и 0,1. Найти вероятность попадания либо в первую, либо во вторую зоны.

Решение. Пусть событие А — попадание в первую зону мишени, а событие В — попадание во вторую зону мишени. Эти события несовместны, поэтому применимы теорема 17.1 и формула (17.3) сложения вероятностей. Искомая вероятность равна

Полная группа событий

ТЕОРЕМА 2. Сумма вероятностей событий, образующих полную группу, равна единице:

Пример 2. На складе готовой продукции находятся изделия, среди которых 5% нестандартных. Найти вероятность того, что при выдаче изделия со склада оно будет стандартным.

Решение. Вероятность получения нестандартного изделия равна 0,05; события выдачи стандартного и нестандартного изделия образуют полную группу. Следовательно, сумма их вероятностей равна единице, и тогда искомая вероятность равна 0,95.

Противоположные события

Определение 2. Два единственно возможных события, образующих полную группу, называются противоположными.

Если событие обозначено через А, то противоположное ему событие обозначается через . Из теоремы 17.2 следует, что

Например, если при стрельбе по мишени попадание — это событие А, то событие   — это промах; сумма их вероятностей равна единице — при выстреле обязательно будет либо попадание, либо промах. То же самое и при подбрасывании монеты: обязательно выпадет либо орел, либо решка.

Пример 3. В магазине имеется 10 телевизоров, из которых 2 неисправных. Найти вероятность того, что среди наугад взятых 3-х телевизоров будет хотя бы один неисправный.

Решение. События "среди взятых телевизоров нет ни одного неисправного" и "есть хотя бы один неисправный" — противоположные. Первое из них обозначим через А, а второе — через . Общее число способов, которыми можно взять 3 изделия из десяти, равно C. Число исправных телевизоров равно 8, число способов выборки из них трех изделий равно C, так что вероятность Р(А) = C. Искомая вероятность определяется из формулы (17.4):

Теорема умножения вероятностей

Произведение событий и условная вероятность

Определение 1. Произведением двух событий А и В называется событие АВ, означающее совместное появление этих событий (см. гл. 1.1, произведение множеств).

Например, если событие А — шар, событие В — белый цвет, то их произведение АВ — белый шар. Аналогично определяется произведение нескольких событий, как совместное появление их всех.

Если при вычислении вероятности события никаких других ограничений кроме необходимого комплекса условий S не налагается, то такая вероятность называется безусловной. Если же налагаются другие дополнительные условия, содержащие случайные события, то вероятность такого события называется условной.

Определение 2. Вероятность события В в предположении о наличии события А называют условной вероятностью РA(В).

Пример 1. В ящике лежит 11 деталей, 3 из них нестандартные. Из ящика дважды берут по одной детали, не возвращая их обратно. Найти вероятность того, что во второй раз из ящика будет извлечена стандартная деталь — событие В, если в первый раз была извлечена нестандартная деталь — событие А.

Решение. После первого извлечения в ящике из 10 деталей осталось 8 стандартных, и, следовательно, искомая вероятность

Пусть теперь известны вероятность Р(А) события А и условная вероятность РА(В) события В. Тогда справедлива следующая теорема.

ТЕОРЕМА 3. Вероятность произведения двух событий определяется формулой

Пример 2. В условиях примера 1 найти вероятности того, что в первый раз извлечена нестандартная деталь, а во второй раз — стандартная, и наоборот.

Решение. Итак, событие А — это извлечение из ящика нестандартной детали, а событие В — стандартной. Тогда возможны два случая. 1) Вероятность Р(А) = 3/11, а условная вероятность РA(В) = 0,8. Искомая вероятность произведения этих событий (их совместного появления в указанном порядке) равна, согласно теореме 17.3,

2) Вероятность Р(В) = 8/11, а условная вероятность РB(А) = 0,3. Мы видим, что и в этом случае вероятность произведения событий Р(ВА) = Р(В)РB(А) ≈ 0,22.

В этом примере мы проверили известное в теории равенство

Теорема 17.3 допускает обобщение на случай произведения любого числа событий A1, А2, А3, ..., An:

т.е. вероятность совместного появления п событий равна произведению п вероятностей, где PA1A2...Ak-1(Ak) — условные вероятности событий Ak в предположении, что события A1A2 ... Ak-1 уже произошли (k = 1, 2, ... , п).

Пример 3. В урне находится 4 белых шара, 5 красных и 3 синих. Наудачу извлекают по одному шару, не возвращая его обратно. Найти вероятность того, что в первый раз появится белый шар (событие А), во второй раз — красный (событие В), в третий — синий (событие С).

Решение. Вероятность появления белого шара в первом извлечении Р(А) = 1/3; условная вероятность появления красного шара во втором извлечении при условии появления в первый раз белого шара РA(В) = 5/11; условная вероятность появления синего шара в третьем извлечении при условиях появления в предыдущих извлечениях белого и красного шаров РAB(С) = 0,3. Искомая вероятность определяется по формуле (17.6) при п = 3:

Независимые события

Определение 3. Событие В называется независимым от события А, если условная вероятность события В равна его безусловной вероятности (появление события А не влияет на вероятность события В):

Отсюда следует, что и событие А также независимо от события В:

Для независимых событий теорема умножения вероятностей 17.3 в общей форме, которая следует из (17.6), имеет вид

Равенство (17.7) принимается за определение независимых событий. При этом если события независимы, то независимы также и соответствующие им противоположные события.

Пример 4. Найти вероятность поражения цели при совместной стрельбе тремя орудиями, если вероятности поражения цели орудиями соответственно равны 0,9, 0,8 и 0,7 (события А, B и С).

Решение. Поскольку события А, В и С являются независимыми, то искомая вероятность вычисляется, согласно формуле (17.7), при n = 3:

Когда в результате испытания может иметь место n независимых событий с известными вероятностями их появления, особый интерес представляет случай нахождения вероятности наступления хотя бы одного из них (например, в случае трех событий найти вероятность наступления либо одного, либо двух, либо трех событий). Обозначим это событие через А. Справедлива следующая теорема.

ТЕОРЕМА 4. Вероятность появления хотя бы одного из независимых событий А1, A2, ... , Аn определяется формулой

где qi = 1 — pi — вероятности соответствующих противоположных событий i (i = 1, 2,... , n).

В частном случае, когда все события Аi имеют одинаковую вероятность р, из формулы (17.8) следует, что

Пример 5. В условиях примера 4 найти вероятность поражения цели (хотя бы одного попадания) при залповой стрельбе орудий.

Решение. Вероятности противоположных событий (промахов) соответственно равны q1 = 0,1, q2 = 0,2, q3 = 0,3. Искомая вероятность находится по формуле (17.8) при п = 3:

Из этого примера наглядно видно преимущество совместного воздействия случайных событий с целью достижения общего результата.

Пример 6. На перевозку груза направлены 4 автомобиля. Вероятность нахождения каждой из машин в исправном состоянии равна 0,8. Найти вероятность того, что в работе участвует хотя бы один из выделенных для этого автомобилей.

Решение. Вероятность противоположного события (машина неисправна) равна q = 1 - 0,8 = 0,2. По формуле (17.9) находим искомую вероятность при n = 4:

Пример 7. Вероятность обслуживания клиента одним операционистом в банке равна 0,6. Какое минимальное число операционистов должно работать в банке, чтобы вероятность обслуживания клиента была не менее 0,95?

Решение. Вероятность противоположного события (отказ в обслуживании клиента операционистом) равна 0,4. Пусть n — количество операционистов, удовлетворяющее условию задачи, т.е.

Решая это неравенство, получаем

Логарифмирование обеих частей этого неравенства дает

Поскольку n должно быть целым числом, окончательно получаем, что в банке должны работать не менее 4 операционистов.

Использование элементов алгебры матриц является одним из основных методов решения многих экономических задач. Особенно этот вопрос стал актуальным при разработке и использовании баз данных: при работе с ними почти вся информация хранится и обрабатывается в матричной форме.

Модель Леонтьева многоотраслевой экономики Макроэкономика функционирования многоотраслевого хозяйства требует баланса между отдельными отраслями. Каждая отрасль, с одной стороны, является призводителем, а с другой — потребителем продукции, выпускаемой другими отраслями. Возникает довольно непростая задача расчета связи между отраслями через выпуск и потребление продукции разного вида. Впервые эта проблема была сформулирована в виде математической модели в 1936 г. в трудах известного американского экономиста В.В.Леонтьева, который попытался проанализировать причины экономической депрессии США 1929-1932 гг. Эта модель основана на алгебре матриц и использует аппарат матричного анализа.

Линейная модель торговли Одним из примеров экономического процесса, приводящего к понятию собственного числа и собственного вектора матрицы, является процесс взаимных закупок товаров. Будем полагать, что бюджеты п стран, которые мы обозначим соответственно x1, x2, … , xn расходуются на покупку товаров. Мы будем рассматривать линейную модель обмена, или, как ее еще называют, модель международной торговли.

Обобщения теорем сложения и умножения Появление только одного из независимых событий Рассмотрим примеры совместного применения теорем сложения и умножения. Пусть два независимых события А1 и А2 имеют вероятности появления соответственно p1 и р2. Найдем вероятность появления только одного из этих событий


Алгебра и аналитическая геометрия