Портативная акустическая система

Гуманитарные науки

Гуманитарные науки

Биржа студенческих   работ. Контрольные, курсовые, рефераты.

Биржа студенческих
работ. Контрольные, курсовые, рефераты.

Студенческий файлообменник

Студенческий файлообменник

Выполнение 
работ на заказ. Контрольные, курсовые и дипломные работы

Выполнение работ на заказ. Контрольные, курсовые и дипломные работы

Занимайтесь онлайн 
        с опытными репетиторами

Занимайтесь онлайн
с опытными репетиторами

Приглашаем к сотрудничеству преподователей

Приглашаем к сотрудничеству преподователей

Готовые шпаргалки, шпоры

Готовые шпаргалки, шпоры

Отчет по практике

Отчет по практике

Приглашаем авторов для работы

Авторам заработок

Решение задач по математике

Закажите реферат

Закажите реферат

Вычисление длины дуги кривой Аналитическая геометрия на плоскости Решить систему линейных уравнений Комплексные числа Алгебра и аналитическая геометрия Система линейных уравнений Двойной интеграл Криволинейный интеграл 2-го рода

Математический анализ. Контрольная работа

Криволинейный интеграл 2-го рода

Рассмотрим кривую AB, которую пока считаем незамкнутой.

Пусть проекция этой кривой на ось x представляет собой отрезок .

Пусть точки дают разбиение кривой AB. Рассмотрим их проекции , лежащие на отрезке и обозначим .

(Отметим, что точки не обязательно упорядочены так: , т.е. не обязательно дают разбиение отрезка , поэтому некоторые могут быть меньше 0!).

Пусть - определена на AB. Пусть - точка, лежащая на кривой между и . Положим .

Определение. Пусть . Если , то говорят, что I - это криволинейный интеграл второго типа.

Точно также, рассматривая проекции на ось y, определим .

Интеграл общего вида определяется, как сумма этих двух интегралов.

Вычисление криволинейного интеграла 2-го типа проводится в соответствии со следующей теоремой.

Теорема. При условиях предыдущей теоремы .

Примечание 1.

  1. Если кривая L задана явным уравнением , где - непрерывно дифференцируемая функция, то предыдущая формула принимает вид: .
  2. Если L задана уравнением , то .
  3. Если L - отрезок прямой , то для любой функции P, если L - отрезок прямой , то

для любой функции Q.

Примечание 2. Пусть - угол, составляемый вектором касательной к кривой и положительным направлением оси x. Тогда . Поэтому .

Заметим, что при изменении направления обхода угол изменяется на . При этом , и интеграл в правой части написанного выше равенства меняет свой знак.

Примечание 3. В случае пространственной кривой L: , где - непрерывные на функции, а f - непрерывна на L, то .

Аналогично, для непрерывных на L функций P,Q,R имеем .

Примечание 4. Говорят, что на области задано векторное поле, если каждой точке сопоставлен вектор . Обозначим - радиус-вектор точки и . Тогда (скалярное произведение) . Поэтому . Из физики известно, что эта величина представляет собой работу силы вдоль кривой L.

8.Формула Грина

Эта формула обобщает формулу Ньютона-Лейбница.

Теорема 1. Пусть G - криволинейная трапеция: , где - непрерывные на функции, L - граница области G и направление обхода L выбрано так, что область G остается слева.

Пусть . Тогда .

Знак означает, что контур интегрирования L - замкнутый.

Доказательство. Вычислим .

При каждом фиксированномвеличина определяется, как производная по y функции от одной переменной y, P(x,y). Поэтому при каждом x применима формула Ньютона-Лейбница, согласно которой . Поэтому .

Разобъем кривую L на 4 участка.

. .

Поэтому .

Теорема 2. Пусть G - криволинейная трапеция , где - непрерывные на функции, L - граница G, а направление обхода L выбрано так, что G остается слева.

Пусть .

Тогда .

Доказательство.. Теорема доказана.

Следствие 1. Если область G можно представить как в виде трапеции , где - непрерывно дифференцируемые на функции, так и в виде , где - непрерывно дифференцируемые на функции, L - граница G, причем при ее обходе область G остается слева, то .

Примечание. Области, удовлетворяющие условиям следствия 1 - явление обычное. Например, круг , ограниченный окружностью , можно задать так: , а можно и так: .

Следствие 2. Если область G можно разбить кривыми на конечное число областей, удовлетворяющих условиям следствия 1 и L - граница G, причем направление обхода выбрано так, что область G остается слева, и P и Q удовлетворяют перечисленным выше условиям, то .

Доказательство. Ограничимся случаем, когда область G разбивается на 2 части , удовлетворяющие условиям следствия 1, кривой . Пусть ограничивает , а ограничивает . Тогда, поскольку - это часть L и кривая , а - остаток L и кривая , но проходимая в противоположном направлении (поэтому интегралы по этим добавленным участкам сократятся).

Замечание. Можно доказать формулу Грина для областей, ограниченных замкнутыми кусочно-гладкими кривыми.

 

9.Условие независимости криволинейного интеграла от формы пути на плоскости

Пусть область. Эта область называется односвязной, если вместе с любым замкнутым контуром , лежащем в ограничиваемая контуром область также целиком содержится в .

Пример односвязной области: круг.

Пример неодносвязной области: круг с выколотой точкой. содержит выколотую точку, а - нет, следовательно не входит в целиком.

Теорема 1. Пусть - односвязная область, . Условие, что равносильно тому, что всюду в этой области .

Доказательство.

  1. . Если всюду в выполнено равенство , то по формуле Грина .
  2. . Предположим, что в области есть точка , в которой . Пусть, для определенности, . Тогда существует окрестность точки , в которой значения больше, чем . Выберем в этой окрестности окружность радиуса и рассмотрим

.

По формуле Грина . Это противоречит предположению о том, что должен быть равен 0.

Определение. Пусть - область, , - контур. Будем говорить, что не зависит от формы пути в, если - контуров с началом в точке и концом в точке , .

Теорема 2. Пусть - область. Условие независимости от формы пути в равносильно тому, что для любого замкнутого контура .

Доказательство.

  1. (). Пусть интеграл не зависит от формы пути и пусть - замкнутый контур в . Выберем на две произвольные точки и и рассмотрим соединяющие эти точки части контура , назовем их . При этом состоит из и проходимого в противоположном направлении контура . По условию, . Значит, .
  2. (). Пусть для любого контура

.

А) В случае, если , соединяющие точки не имеют других общих точек, то, как и в предыдущей части, состоит из и проходимой в противоположном направлении . Поэтому , откуда .

Б) Если имеют конечное число общих точек, кроме и , то можно применить пункт 2А к каждому полученному контуру, интеграл по которому в связи с предположением равен 0, и поэтому для каждой такой полученной части .

В) Случай, когда кроме и кривые имеют бесконечное множество общих точек, мы оставим без доказательства.

Сопоставляя теорему 2 с теоремой 1, получаем следствие.

Следствие. Пусть - односвязная область. не зависит в от формы пути интегрирования тогда и только тогда, когда в этой области выполняется тождество .

Признак полного дифференциала на плоскости Если - дифференцируемая функция двух переменных, то . Выясним, при каких условиях на существует такая функция , что , т.е. . В предположении непрерывности смешанных производных: или . Докажем, что если - односвязная область, то верно и обратное.

Интегралы по поверхности 1 и 2 рода Поверхностные интегралы 1-го рода. Пусть - двусторонняя поверхность, имеющая площадь . Рассмотрим разбиение этой поверхности на части с помощью непрерывных кривых. Пусть функция определена во всех точках поверхности . Выберем произвольным образом точки и рассмотрим сумму .

Формула Стокса. Ее векторная запись


Возрастание и убывание функции